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Under some circumstances, autooscillations can arise in an electro=
chemical system with decreasing characteristics [1-3]. A method for
finding the polarization curve P = P(9) (here 9 is the electrode poten-
tial, P = i/ ¢ (0, t), where i is the current density, and c(0, t) is the
mass concentration at the electrode surface), ifthedistribution in time of
the current density is given, is proposed in [1]. In the numerical solu-
tion of this problem, which is considered below, considerable compu-
tational difficulties were encountered.

§1. It is assumed in [1] that the quantity X(t), pro-
portional to the current density, is a known periodic
function of the time t with period T:
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) =
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(0= pT, Be=—3s pT T, y=Y, pT + T,
0L p<LL W)L, p(t) >0), (1.1)

and with the help of the Duhamel formula [4], conver-
gent series were obtained for the function u(x, t), the
periodic solution of the diffusion equation (D is the dif-
fusion coefficient)

ou a2y
with the boundary condition
du (0, ¢
288 ) (1.3)

in the semi-infinite region x = 0, The matter concen-
tration c(x, t) is related to u(x, t) by the equation

u(z, ) = le(z, ) — ey — (¢° — ez / UG

(here cg, c°, I, and G are some constants [1]). The
function X(t) must now satisfy certain requirements
[1l.

When the function x(t) is known and the formulas
(1.1) are given, the solution of Eq. (1.2) with the con-
dition (1.3) gives us

{ul(O, t) when o L kT <t <<B - kT(k:O’ w2, (1.4)

wy (0,7) when g - ir <<t <<y + kT

It is now easy to find the parametric representation
of the characteristic P(#), which consists, for the val-
ues of + which correspond to the autooscillation cycle
and include the region of the characteristic maximum,
of the two pieces P;(#) and Py(), i.e. [1],
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(v, 7, A = const). (1.5)

p— 0= Glr(p(0)+ 4),

v— O =CGlr(pH+ 4),

The series uy(0, t) and uy(0, t) now have the follow-
ing forms:
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Formulas (1.6) and (1.9) were obtained, after some
transformations, from Eqgs. (2.3)—(2.5) of [1].

Clearly, if in the formulas (1.8) we replace o by 8, Bby 7y, ¥ by
B+ T, ¥(o) by ¢(0), and ¢(0) by ¥(0), then Eq. (1.6) passes over into
Eq. (1.7). Thus the numerical computation of the functions uy(0, t) and
u3(0, t) can both be carried out by the same program, with only the in-
put data being changed. Accordingly, we shall consider below only the
means of finding a numerical solution of Eq. (1.6), where the notation
(1.8) is used. Technical difficulties arise only in finding the solution of
Eq. (1.6), since when uy(0, t) has been determined, the characteristic
Py($9) can easily be calculated from the formulas (1.5). These difficul-
ties are twofold.

In the first place, if the functions ¥(t) and ¢(t), which appear in
Eq. (1.8) have some sort of complicated form, then approximate inte~-
gration formulas must be used to calculate the integrals (1.8); the di-
rect calculation of these integrals is often a laborious process, requir-
ing a great deal of machine time.

In the second place, the series (1.6), using the notation (1.8), con-
verges very slowly; this is an alternating series, each term of which is
of order i™*#, and the computation time from the formula (1.6) would
be very large,

In order to avoid these difficulties, we transform the integrals (1.8)
into a new form, and we shall further make use of asymptotic formulas
to calculate them at large values of j.

§2. We now show how the calculation is carried out
in the case in which the functions ¢(t) and ¢ (t) are
given by

@) =a-+b(y—1) +glt—p",
Y@ =e+d@ —97 4 {8 — o), (2.1)
(@>0,5>0, g <01 <5 <1, e <0,
Q<0 130, <q< 1)
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Here these constants are such that the relations
(4.2)—(4.4) and {2.15)—(2.16) of [1] are to be satisfied,
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Let us set

@ (1) = @1 (1) T g (£),

Here

Y (t) =1 (t) + Py (t) (2-2)

) =atgt—P" h@Q=et+ft—o) (2.3)
() =0 — 1, Ve () = d (B — e, 2.4)

Substituting (2.2) into Eq. (1.8), we see that, using
the notation of Egs. (2.1)-(2.4), each of the integrals
of Eq. (1.8) separates into two parts:

Ji=J1y+ J1,9

Jos=Jes1+Joj0,  Josa=Toj01+ Soj1,0. (2.5)

Y 8
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(i=1,2).

It is clear from Eq, (2.3) that the integrals (2.6),
with i =1, can be performed with elementary func-
tions.

Let us now take up the integrals (2.6) with i = 2,

We first consider the expression J; ;. It is easy to
see that
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Now let & <t < . In this case the integral Jy ; is
not taken in elementary functions; it is a conver-
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gent improper integral, since the integrand becon ¢s
infinite at ¢ = t. Integrating by parts, we find that

o= 24 {B—a) ) i—a—

f

~q§@—op1y1=5ds}. 2.8)

Let us examine the following integral from Eq.
(2.8):

t
J={@—oy1yT=35ds. (2.9)

o

At ¢ =t the derivative of the integrand becomes infi-
nite,

A method for the approximate calculation of inte-
grals of this type is given in [5]. Assume that 6 > -1
and that it is not a positive integer. We introduce the
notation

b

1=\1()ds

a

(f ()= (s1—0P % (o)), (2.10)

As in [5], we separate the function f(o) into two
parts
7(6) = f1(c) + fa (o)

(n © =@ —o)’x (o), i=1, z). (2.11)

such that the function fi(c) contains all the singularities
of f(o), but is integrable in finite form, while the func-
tion fy(o) has no singularities, and its integral can be
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found with the help of one of the numerical integration
formulas (for example, the Simpson formula). The er-
ror € in the Simpson formula is determined by the
modulus of the fourth derivative of the integrand:

b——a)5 M, @.12)

S<< 5— | gy Me=max|f1V(6)] (e<s<D)-

Here 2m is the number of segments into which the
interval of integration ¢ = ¢ < b is divided.

Therefore the function f(s) must be transformed so
as to make the fourth derivative of the function fic)
equal to zero at o = oi.

Comparing formulas (2.9) and (2.10), we see that in
the case under consideration 6 = 1/2, ¢y = t. Since « <
<t < 8, the function n(g) = (8 — 0)9™! has no singulari-
ties in the interval (o, t).

Separating out the first four terms in the Taylor
series expansion of the function n(g) around the point
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o =t, we obtain

(2.13)

Using Eqgs. (2.9) and (2.13), we can write out the ex~
pression for the function fi{o), which appears in Eq.
(2.11):

fafo) = Yi—o {B—a)1—

3

— Y an(@@— e — 0},

m=>0

a(q) =1,

(g—m){g—m+1)... (¢—1D

(m=£0). (2.14)

The integrals J3,, and Jz+;,; are transformed sim-
ilarly.

Let us now write down the final forms for the inte-
grals Jy, sz, and Jgj-H:
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The expressions for the integral Jyj+,; and the
function f#+¥ (¢} can be obtained from the first and

third formulas of Eq. (2.16) if we replace e by e, g by
S, 8byq, bbyd, by o, and v by 8.

§3. At large values of j we make use of asymptotic
expansions of the integrals Jyj and Jpj+1, as defined by
Eq. (1.8).

Introducing the notation

#* = (jI)™ (3.1)

and expanding the function [1 + x*(t - 0')]1/2 in a Mac-
laurin series around the value x = 0 with a remainder
term, we obtain from Eq. (1.8)
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Here [ is some positive integer. A formula analo-
gous to Eq. (3.2) can also be written for the integral
J 2+ defined by the third formula of Eq. (1.8). Adding
together J3j and Jyj+;, computing the integrals

x 8
Co@t—ords, (v @—ord u<n<n  (3.3)
B o

and, as was shown in [1], taking into account that

8 ¥

\o(0)ds+ { p(o)ds = 0. (3.4)
a B

and then returning to the previous notation of Eq, (3.1),
from Eq. (3.2) and from the analogous formula for
J2j+1 we find the following expression:

!
Taj+ Taia= 2 frsanen GT) P 4 Roj 4 Roja . (3.5)
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The quantity Av,om.: is given by the formula
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@ (Y . .
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=0
The functions (7), defined on the interval § = 7= 7,
are given by
Oy = T 4

if
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The quantity Ai,em.) is defined by the formula
which is obtained if in the expression (3.7) we replace
v by B, BDby «, and the functions €j(7) by the corre-
sponding functions ®;(7), which in turn are given by

(3.8) when we replaceaby e, bbyd, sbyq, gby f
v by B, and 8 by «.
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In Eq. (3.5) sz + R2j+1 is the remainder term, for
which we obtain the following estimate:

[Ryj + Ryjpn [<H (D) (77)52, (3.9)

Here

13... @24+

}‘(l) = 2l+1 (I+2)

@ @) [(v — )2 — B—a)2) — ¢ (a) (B— )2} - (3.10)
Let us now rewrite Eq. (1.6) in the form

Uy (0, t) =
Jo—L

=V Zn+ S0t I+ S+ R}, (3.11)

j=1

oo 1
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J=jyn=1
oo

Ry, = 2 (Roj+ Raj,1). (3.12)
j=ia
Here jj is some integer, which is defined below.
When the Riemann zeta-function is introduced into
this discussion, it becomes easy to calculate the func-
tion Sj, given in Eq. (3.12) and to choose the number

jo, such that for given ¢ and [, the remainder term Rj,
does not exceed ¢:

| i | <<

A (D) 1
[J

Ti+3/2 a— 2—1—1/2) [ZE (12_.):]”1/2 (3.13)

(3.8)

Here E(x) is the integer part of the number x.

In [7] are presented the results of calculations by the method pro-
posed here for the function u(0, t) in the case of rectilinear oscillations,

whenb=g=d=f =0. In this case the parameter p takes the following
values: 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875.

Figures 1=4 present the graphs of the functions x(t), w0, t), x(u),
and p(6), where p = P/GI, 9 = (& —~ v)/GIr. The function x(t) is calcu-
lated from Eq. (2.1), u(0, t) from Eq. (3.11), and p(8) from Eq. (1.5).
Curve 1 corsesponds to the following values of the constants in the solu-
tion: p= 0.5, ¢ = —e = 3.87000, b= ~d = 4.69923, g = —f = —6.89511,
§=q=0.93477, A= 6.555, co= 14.884; curve 2: p= 0.5, a = —e =
=0.96333, b= —d = 1.56644, g= —f = —0.67403, s=q = 0.93477, A=
= 1,695, co= 11.654; curve 3: p= 0.25, a = 3,87000, b= 8.98298, g=
= —9.75116, e = ~0.96333, d = —=1.07228, f= 0.55034, s=q=
=0.93477, A= 1.2, co= 6. The lowest curve in Fig. 3 corresponds to
curve 1, The dashed lines in Fig. 4 show the segments of the character-
istic p(€) which do not correspond to the autooscillation cycle, but to

the neighborhood of an unstable stationary state, and so cannot be cal-
2t ated by the method proposed here. In each case considered here we

hai set T = 0,182 sec, D = 10™*em?/sec. The dimensions of the pa-
rameters used in the solution are as follows:

ful = [cp] = 1078 A/cm,
[l = (4] = [a] = [e] = 107 A/cm?,
[6]= 10" A/fcmPsect, [d] = 1078 A/cm%ecd,
le]l = [f] = 10~% A/cmPsec¥?;

the quantities s and q are dimensionless.

The results of the calculations with the constants used here agree
with the experimental data of [3], and we have succeeded in calculat~

ing the maximum values of the characteristic p(6), which cannot be
done experimentally,

The computer program was written, and the calcu-
lations performed, by S. V. Dergacheva,
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